Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The MIA pathway: a key regulator of mitochondrial oxidative protein folding and biogenesis.

Identifieur interne : 000504 ( Main/Exploration ); précédent : 000503; suivant : 000505

The MIA pathway: a key regulator of mitochondrial oxidative protein folding and biogenesis.

Auteurs : Amelia Mordas [Royaume-Uni] ; Kostas Tokatlidis [Royaume-Uni]

Source :

RBID : pubmed:26214018

Descripteurs français

English descriptors

Abstract

Mitochondria are fundamental intracellular organelles with key roles in important cellular processes like energy production, Fe/S cluster biogenesis, and homeostasis of lipids and inorganic ions. Mitochondrial dysfunction is consequently linked to many human pathologies (cancer, diabetes, neurodegeneration, stroke) and apoptosis. Mitochondrial biogenesis relies on protein import as most mitochondrial proteins (about 10-15% of the human proteome) are imported after their synthesis in the cytosol. Over the last several years many mitochondrial translocation pathways have been discovered. Among them, the import pathway that targets proteins to the intermembrane space (IMS) stands out as it is the only one that couples import to folding and oxidation and results in the covalent modification of the incoming precursor that adopt internal disulfide bonds in the process (the MIA pathway). The discovery of this pathway represented a significant paradigm shift as it challenged the prevailing dogma that the endoplasmic reticulum is the only compartment of eukaryotic cells where oxidative folding can occur. The concept of the oxidative folding pathway was first proposed on the basis of folding and import data for the small Tim proteins that have conserved cysteine motifs and must adopt intramolecular disulfides after import so that they are retained in the organelle. The introduction of disulfides in the IMS is catalyzed by Mia40 that functions as a chaperone inducing their folding. The sulfhydryl oxidase Erv1 generates the disulfide pairs de novo using either molecular oxygen or, cytochrome c and other proteins as terminal electron acceptors that eventually link this folding process to respiration. The solution NMR structure of Mia40 (and supporting biochemical experiments) showed that Mia40 is a novel type of disulfide donor whose recognition capacity for its substrates relies on a hydrophobic binding cleft found adjacent to a thiol active CPC motif. Targeting of the substrates to this pathway is guided by a novel type of IMS targeting signal called ITS or MISS. This consists of only 9 amino acids, found upstream or downstream of a unique Cys that is primed for docking to Mia40 when the substrate is accommodated in the Mia40 binding cleft. Different routes exist to complete the folding of the substrates and their final maturation in the IMS. Identification of new Mia40 substrates (some even without the requirement of their cysteines) reveals an expanded chaperone-like activity of this protein in the IMS. New evidence on the targeting of redox active proteins like thioredoxin, glutaredoxin, and peroxiredoxin into the IMS suggests the presence of redox-dependent regulatory mechanisms of the protein folding and import process in mitochondria. Maintenance of redox balance in mitochondria is crucial for normal cell physiology and depends on the cross-talk between the various redox signaling processes and the mitochondrial oxidative folding pathway.

DOI: 10.1021/acs.accounts.5b00150
PubMed: 26214018
PubMed Central: PMC4551283


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The MIA pathway: a key regulator of mitochondrial oxidative protein folding and biogenesis.</title>
<author>
<name sortKey="Mordas, Amelia" sort="Mordas, Amelia" uniqKey="Mordas A" first="Amelia" last="Mordas">Amelia Mordas</name>
<affiliation wicri:level="4">
<nlm:affiliation>†Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>†Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ</wicri:regionArea>
<orgName type="university">Université de Glasgow</orgName>
<placeName>
<settlement type="city">Glasgow</settlement>
<region type="country">Écosse</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tokatlidis, Kostas" sort="Tokatlidis, Kostas" uniqKey="Tokatlidis K" first="Kostas" last="Tokatlidis">Kostas Tokatlidis</name>
<affiliation wicri:level="4">
<nlm:affiliation>†Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>†Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ</wicri:regionArea>
<orgName type="university">Université de Glasgow</orgName>
<placeName>
<settlement type="city">Glasgow</settlement>
<region type="country">Écosse</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26214018</idno>
<idno type="pmid">26214018</idno>
<idno type="doi">10.1021/acs.accounts.5b00150</idno>
<idno type="pmc">PMC4551283</idno>
<idno type="wicri:Area/Main/Corpus">000512</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000512</idno>
<idno type="wicri:Area/Main/Curation">000512</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000512</idno>
<idno type="wicri:Area/Main/Exploration">000512</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The MIA pathway: a key regulator of mitochondrial oxidative protein folding and biogenesis.</title>
<author>
<name sortKey="Mordas, Amelia" sort="Mordas, Amelia" uniqKey="Mordas A" first="Amelia" last="Mordas">Amelia Mordas</name>
<affiliation wicri:level="4">
<nlm:affiliation>†Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>†Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ</wicri:regionArea>
<orgName type="university">Université de Glasgow</orgName>
<placeName>
<settlement type="city">Glasgow</settlement>
<region type="country">Écosse</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tokatlidis, Kostas" sort="Tokatlidis, Kostas" uniqKey="Tokatlidis K" first="Kostas" last="Tokatlidis">Kostas Tokatlidis</name>
<affiliation wicri:level="4">
<nlm:affiliation>†Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>†Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ</wicri:regionArea>
<orgName type="university">Université de Glasgow</orgName>
<placeName>
<settlement type="city">Glasgow</settlement>
<region type="country">Écosse</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Accounts of chemical research</title>
<idno type="eISSN">1520-4898</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carrier Proteins (chemistry)</term>
<term>Carrier Proteins (metabolism)</term>
<term>Cytochromes c (chemistry)</term>
<term>Cytochromes c (metabolism)</term>
<term>Disulfides (chemistry)</term>
<term>Disulfides (metabolism)</term>
<term>Electron Transport (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Mitochondria (metabolism)</term>
<term>Mitochondrial Membrane Transport Proteins (chemistry)</term>
<term>Mitochondrial Membrane Transport Proteins (metabolism)</term>
<term>Mitochondrial Proteins (chemistry)</term>
<term>Mitochondrial Proteins (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Protein Folding (MeSH)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Substrate Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cytochromes c (composition chimique)</term>
<term>Cytochromes c (métabolisme)</term>
<term>Disulfures (composition chimique)</term>
<term>Disulfures (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Mitochondries (métabolisme)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Pliage des protéines (MeSH)</term>
<term>Protéines de transport (composition chimique)</term>
<term>Protéines de transport (métabolisme)</term>
<term>Protéines de transport de la membrane mitochondriale (composition chimique)</term>
<term>Protéines de transport de la membrane mitochondriale (métabolisme)</term>
<term>Protéines mitochondriales (composition chimique)</term>
<term>Protéines mitochondriales (métabolisme)</term>
<term>Spécificité du substrat (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Transport d'électrons (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Carrier Proteins</term>
<term>Cytochromes c</term>
<term>Disulfides</term>
<term>Mitochondrial Membrane Transport Proteins</term>
<term>Mitochondrial Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carrier Proteins</term>
<term>Cytochromes c</term>
<term>Disulfides</term>
<term>Mitochondrial Membrane Transport Proteins</term>
<term>Mitochondrial Proteins</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Cytochromes c</term>
<term>Disulfures</term>
<term>Protéines de transport</term>
<term>Protéines de transport de la membrane mitochondriale</term>
<term>Protéines mitochondriales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cytochromes c</term>
<term>Disulfures</term>
<term>Mitochondries</term>
<term>Oxidoreductases</term>
<term>Protéines de transport</term>
<term>Protéines de transport de la membrane mitochondriale</term>
<term>Protéines mitochondriales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Electron Transport</term>
<term>Humans</term>
<term>Oxidation-Reduction</term>
<term>Protein Folding</term>
<term>Protein Structure, Tertiary</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
<term>Oxydoréduction</term>
<term>Pliage des protéines</term>
<term>Spécificité du substrat</term>
<term>Structure tertiaire des protéines</term>
<term>Transport d'électrons</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mitochondria are fundamental intracellular organelles with key roles in important cellular processes like energy production, Fe/S cluster biogenesis, and homeostasis of lipids and inorganic ions. Mitochondrial dysfunction is consequently linked to many human pathologies (cancer, diabetes, neurodegeneration, stroke) and apoptosis. Mitochondrial biogenesis relies on protein import as most mitochondrial proteins (about 10-15% of the human proteome) are imported after their synthesis in the cytosol. Over the last several years many mitochondrial translocation pathways have been discovered. Among them, the import pathway that targets proteins to the intermembrane space (IMS) stands out as it is the only one that couples import to folding and oxidation and results in the covalent modification of the incoming precursor that adopt internal disulfide bonds in the process (the MIA pathway). The discovery of this pathway represented a significant paradigm shift as it challenged the prevailing dogma that the endoplasmic reticulum is the only compartment of eukaryotic cells where oxidative folding can occur. The concept of the oxidative folding pathway was first proposed on the basis of folding and import data for the small Tim proteins that have conserved cysteine motifs and must adopt intramolecular disulfides after import so that they are retained in the organelle. The introduction of disulfides in the IMS is catalyzed by Mia40 that functions as a chaperone inducing their folding. The sulfhydryl oxidase Erv1 generates the disulfide pairs de novo using either molecular oxygen or, cytochrome c and other proteins as terminal electron acceptors that eventually link this folding process to respiration. The solution NMR structure of Mia40 (and supporting biochemical experiments) showed that Mia40 is a novel type of disulfide donor whose recognition capacity for its substrates relies on a hydrophobic binding cleft found adjacent to a thiol active CPC motif. Targeting of the substrates to this pathway is guided by a novel type of IMS targeting signal called ITS or MISS. This consists of only 9 amino acids, found upstream or downstream of a unique Cys that is primed for docking to Mia40 when the substrate is accommodated in the Mia40 binding cleft. Different routes exist to complete the folding of the substrates and their final maturation in the IMS. Identification of new Mia40 substrates (some even without the requirement of their cysteines) reveals an expanded chaperone-like activity of this protein in the IMS. New evidence on the targeting of redox active proteins like thioredoxin, glutaredoxin, and peroxiredoxin into the IMS suggests the presence of redox-dependent regulatory mechanisms of the protein folding and import process in mitochondria. Maintenance of redox balance in mitochondria is crucial for normal cell physiology and depends on the cross-talk between the various redox signaling processes and the mitochondrial oxidative folding pathway. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26214018</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>02</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-4898</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>48</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2015</Year>
<Month>Aug</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>Accounts of chemical research</Title>
<ISOAbbreviation>Acc Chem Res</ISOAbbreviation>
</Journal>
<ArticleTitle>The MIA pathway: a key regulator of mitochondrial oxidative protein folding and biogenesis.</ArticleTitle>
<Pagination>
<MedlinePgn>2191-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/acs.accounts.5b00150</ELocationID>
<Abstract>
<AbstractText>Mitochondria are fundamental intracellular organelles with key roles in important cellular processes like energy production, Fe/S cluster biogenesis, and homeostasis of lipids and inorganic ions. Mitochondrial dysfunction is consequently linked to many human pathologies (cancer, diabetes, neurodegeneration, stroke) and apoptosis. Mitochondrial biogenesis relies on protein import as most mitochondrial proteins (about 10-15% of the human proteome) are imported after their synthesis in the cytosol. Over the last several years many mitochondrial translocation pathways have been discovered. Among them, the import pathway that targets proteins to the intermembrane space (IMS) stands out as it is the only one that couples import to folding and oxidation and results in the covalent modification of the incoming precursor that adopt internal disulfide bonds in the process (the MIA pathway). The discovery of this pathway represented a significant paradigm shift as it challenged the prevailing dogma that the endoplasmic reticulum is the only compartment of eukaryotic cells where oxidative folding can occur. The concept of the oxidative folding pathway was first proposed on the basis of folding and import data for the small Tim proteins that have conserved cysteine motifs and must adopt intramolecular disulfides after import so that they are retained in the organelle. The introduction of disulfides in the IMS is catalyzed by Mia40 that functions as a chaperone inducing their folding. The sulfhydryl oxidase Erv1 generates the disulfide pairs de novo using either molecular oxygen or, cytochrome c and other proteins as terminal electron acceptors that eventually link this folding process to respiration. The solution NMR structure of Mia40 (and supporting biochemical experiments) showed that Mia40 is a novel type of disulfide donor whose recognition capacity for its substrates relies on a hydrophobic binding cleft found adjacent to a thiol active CPC motif. Targeting of the substrates to this pathway is guided by a novel type of IMS targeting signal called ITS or MISS. This consists of only 9 amino acids, found upstream or downstream of a unique Cys that is primed for docking to Mia40 when the substrate is accommodated in the Mia40 binding cleft. Different routes exist to complete the folding of the substrates and their final maturation in the IMS. Identification of new Mia40 substrates (some even without the requirement of their cysteines) reveals an expanded chaperone-like activity of this protein in the IMS. New evidence on the targeting of redox active proteins like thioredoxin, glutaredoxin, and peroxiredoxin into the IMS suggests the presence of redox-dependent regulatory mechanisms of the protein folding and import process in mitochondria. Maintenance of redox balance in mitochondria is crucial for normal cell physiology and depends on the cross-talk between the various redox signaling processes and the mitochondrial oxidative folding pathway. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mordas</LastName>
<ForeName>Amelia</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>†Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tokatlidis</LastName>
<ForeName>Kostas</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>†Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>07</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Acc Chem Res</MedlineTA>
<NlmUniqueID>0157313</NlmUniqueID>
<ISSNLinking>0001-4842</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C491006">COX17 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004220">Disulfides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C507282">MIA40 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D033681">Mitochondrial Membrane Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024101">Mitochondrial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-43-6</RegistryNumber>
<NameOfSubstance UI="D045304">Cytochromes c</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.3.-</RegistryNumber>
<NameOfSubstance UI="C022704">sulfhydryl oxidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045304" MajorTopicYN="N">Cytochromes c</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004220" MajorTopicYN="N">Disulfides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004579" MajorTopicYN="N">Electron Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D033681" MajorTopicYN="N">Mitochondrial Membrane Transport Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024101" MajorTopicYN="N">Mitochondrial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017510" MajorTopicYN="N">Protein Folding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>2</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26214018</ArticleId>
<ArticleId IdType="doi">10.1021/acs.accounts.5b00150</ArticleId>
<ArticleId IdType="pmc">PMC4551283</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 2005 Jan 3;579(1):179-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15620710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 12;279(46):47815-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15364952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2005 Oct 28;353(3):485-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16181637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2005 Nov 11;353(5):937-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16185707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2006 Jul;5(7):1543-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16823961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Jan 19;365(3):612-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17095012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 Mar 20;581(6):1098-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17336303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Aug 3;282(31):22472-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17553782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2007 Sep;65(5):1360-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17680986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2007 Nov 5;179(3):389-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17967948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Nov 28;26(23):4801-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17972915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Dec 28;282(52):37461-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17959605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2008 Oct 20;183(2):195-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18852299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Oct 31;283(44):29723-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18779329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 Jan 16;385(2):331-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19010334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jan 16;284(3):1353-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19011240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2009 Feb;16(2):198-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19182799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2009 May;20(10):2530-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19297525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2009 Aug;20(15):3481-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19477928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Aug 21;138(4):628-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19703392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14403-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19667201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 Oct 23;393(2):356-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19703468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2009 Dec 28;187(7):1007-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20026652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2010 Feb 26;37(4):516-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20188670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biosyst. 2010 Dec;6(12):2459-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20922212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20190-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21059946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2011 Jun 24;18(6):794-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21700214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2012 Feb;122(2):600-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22214851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Biol. 2012 Apr 20;7(4):707-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22296668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2012 Jul 18;31(14):3169-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22705944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Nov 16;287(47):39480-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23019327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2012 Nov 14;31(22):4348-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22990235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2012 Oct;23(20):3957-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22918950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2012 Dec;11(12):1840-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22984289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Feb;1833(2):274-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22683763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2013 Mar 1;22(5):989-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23197653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2013 Mar;24(5):543-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23283984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2013 Oct;280(20):4943-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23802566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2013 Oct;280(20):4960-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23937629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17356-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24101517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014;5:3041</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24407114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2014 Jan 13;28(1):30-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24360785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Apr 4;289(14):9852-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24569988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Biol. 2014 Sep 19;9(9):2049-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24983157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2014 Dec 12;426(24):4087-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25451030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2015 Jan 15;26(2):195-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25392302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jun 23;43(11):5451-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25956655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Aug 21;290(34):20804-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26085103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1999 Nov;24(11):428-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10542408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Mar 1;21(5):942-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11867522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13207-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14576278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 30;279(18):18952-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Oct 1;23(19):3735-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15359280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1992 Mar;232(1):58-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1552903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Jul 1;121(7):1059-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15989955</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
<region>
<li>Écosse</li>
</region>
<settlement>
<li>Glasgow</li>
</settlement>
<orgName>
<li>Université de Glasgow</li>
</orgName>
</list>
<tree>
<country name="Royaume-Uni">
<region name="Écosse">
<name sortKey="Mordas, Amelia" sort="Mordas, Amelia" uniqKey="Mordas A" first="Amelia" last="Mordas">Amelia Mordas</name>
</region>
<name sortKey="Tokatlidis, Kostas" sort="Tokatlidis, Kostas" uniqKey="Tokatlidis K" first="Kostas" last="Tokatlidis">Kostas Tokatlidis</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000504 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000504 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26214018
   |texte=   The MIA pathway: a key regulator of mitochondrial oxidative protein folding and biogenesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26214018" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020